Novel freeze-drying methods to produce a range of collagen-glycosaminoglycan scaffolds with tailored mean pore sizes.
نویسندگان
چکیده
The pore structure of three-dimensional scaffolds used in tissue engineering has been shown to significantly influence cellular activity. As the optimal pore size is dependant on the specifics of the tissue engineering application, the ability to alter the pore size over a wide range is essential for a particular scaffold to be suitable for multiple applications. With this in mind, the aim of this study was to develop methodologies to produce a range of collagen-glycosaminoglycan (CG) scaffolds with tailored mean pore sizes. The pore size of CG scaffolds is established during the freeze-drying fabrication process. In this study, freezing temperature was varied (−10 degrees C to −70 degrees C) and an annealing step was introduced to the process to determine their effects on pore size. Annealing is an additional step in the freeze-drying cycle that involves raising the temperature of the frozen suspension to increase the rate of ice crystal growth. The results show that the pore size of the scaffolds decreased as the freezing temperature was reduced. Additionally, the introduction of an annealing step during freeze-drying was found to result in a significant increase (40%) in pore size. Taken together, these results demonstrate that the methodologies developed in this study can be used to produce a range of CG scaffolds with mean pore sizes from 85 to 325 microm. This is a substantial improvement on the range of pore sizes that were possible to produce previously (96-150 microm). The methods developed in this study provide a basis for the investigation of the effects of pore size on both in vitro and in vivo performance and for the determination of the optimal pore structure for specific tissue engineering applications.
منابع مشابه
Fabrication of Gelatin Scaffolds Using Thermally Induced Phase Separation Technique
Gelatin is considered as a partially degraded product of collagen and it is a biodegradable polymer which can be used to produce scaffolds for tissue engineering. Three-dimensional, porous gelatin scaffolds were fabricated by thermally induced phase separation and freeze-drying method. Their porous structure and pore size were characterized by scanning electron microscopy. Scaffolds with differ...
متن کاملNumerical Study on Parameters Affecting the Structure of Scaffolds Prepared by Freeze-Drying Method
Freeze-drying is one of the most used methods for preparing scaffolds and is very sensitive to the material and operational parameters such as nucleation temperature, thermal properties of the mold, cooling rate, set freezing point, and slurry height. In the present study, a Finite Element Method (FEM) based code was developed to investigate the effects of such parameters and to eventually ...
متن کاملInfluence of freezing rate on pore structure in freeze-dried collagen-GAG scaffolds.
The cellular structure of collagen-glycosaminoglycan (CG) scaffolds used in tissue engineering must be designed to meet a number of constraints with respect to biocompatibility, degradability, pore size, pore structure, and specific surface area. The conventional freeze-drying process for fabricating CG scaffolds creates variable cooling rates throughout the scaffold during freezing, producing ...
متن کاملScaffold mean pore size influences mesenchymal stem cell chondrogenic differentiation and matrix deposition.
Recent investigations into micro-architecture of scaffolds has revealed that mean pore sizes are cell-type specific and influence cellular shape, differentiation, and extracellular matrix secretion. In this context, the overall goal of this study was to investigate whether scaffold mean pore sizes affect mesenchymal stem cell initial attachment, chondrogenic gene expression, and cartilage-like ...
متن کاملThe effect of pore size on cell adhesion in collagen-GAG scaffolds.
The biological activity of scaffolds used in tissue engineering applications hypothetically depends on the density of available ligands, scaffold sites at which specific cell binding occurs. Ligand density is characterized by the composition of the scaffold, which defines the surface density of ligands, and by the specific surface area of the scaffold, which defines the total surface of the str...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Tissue engineering. Part C, Methods
دوره 16 5 شماره
صفحات -
تاریخ انتشار 2010